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A matrix formulation for determining the spatial grain-size distribution of tetrakai- 
decahedral grains from linear-intercept data is developed. The truncation effect 
(which stems from the fact that the intersection of single-size grains by a test line 
gives rise to intercepts of different length) and the sampling effect (which results as 
a consequence of bigger grains being intersected more frequently than smaller 
ones) are separately taken into account. The derivation procedure of this formula- 
tion is applicable to any other convex shape, provided the linear intercept distribu- 
tion for single-size grains of the corresponding shape is known. The percentage 
spatial grain-size distributions obtained by the formulation derived here are similar 
to those estimated by the Spektor's chord method for spherical grains. 

1. I n t r o d u c t i o n  
The main difficulty found in grain and particle 
size distribution analysis from ol~aque samples 
arises from the virtual impossibility of directly 
measuring the true-size distribution. A useful 
procedure of providing the experimental data 
required to calculate the spatial size distribution, 
makes use of the distribution of intercepts of a 
test line with grains [1]. Moreover, it is well 
established that the spatial size distribution dif- 
fers from the intercept length distribution 
because of the truncation and sampling effects 
[1]. The former effect stems from the fact that the 
intersection of single-size grains by a test line 
gives rise to intercepts of different length, while 
the latter results as a consequence of bigger 
grains being intersected more frequently than 
smaller ones. 

Several methods for computing true-size dis- 
tributions from linear analysis have been 
developed, particularly for spherical and ellip- 
soidal geometries [1-3]. Another reasonable 
choice for the grain shape is a tetrakaideca- 
hedron (truncated octahedron). In fact, a distri- 
bution of complex polyhedra exists; however, a 
tetrakaidecahedral shape is of interest since it 
corresponds to the plane-faced polyhedron 

which, for single-size grains, best satisfies the 
minimum surface-energy and space-filling 
requirements [4-6]. This shape has been pre- 
viously assumed [7-12]. Attempts have been 
made to obtain the spatial grain-size distribu- 
tions for tetrakaidecahedral grains fi'om linear 
intercepts [11, 12]. These attempts, however, 
have actually only considered the truncation 
effect. 

In this work, a matrix method for the deter- 
mination of spatial grain-size distributions of 
tetrakaidecahedral grains from linear intercept 
distributions is developed. The present method, 
which separately takes into account the two 
above effects, is mainly based on two previously 
reported works [3, 12]. Some conclusions in- 
ferred from the application of this method are 
also presented. 

2. M e t h o d  formula t ion  
2.1. Foundations of the method and the 

truncation effect 
As a result of the truncation effect, the distribu- 
tion of linear intercept measurements of a set 
of grains will range from zero to a maximum 
value, even for single-size grains [1]. In fact, 
the distribution of intercepts for single-size 
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T A B L E  I Distribution of linear intercepts for single-size tetrakaidecahedral grains [11] 

Class number 

8 7 6 5 4 3 2 1 

Range (l/lmax) 0~.13 0.134).18 0.18~).24 0.24~.30" 0.30"~).42 0.42-0.56 0.564).75 0.75 1.00 
Relative frequency * 0.013 0.005 0.026 0.047 0.083 0.176 0.295 0.365 

*We think that this value should be changed to 0.32. 
tNote that the sum of these eight original relative frequencies yields 1.010. 

tetrakaidecahedral grains has been previously 
determined [11]. In that work, the distribution of 
intercepts was divided into eight classes, adopt- 
ing a geometric scale of module 4/3. The upper 
limit of this distribution is the value of the maxi- 
mum intercept length,/max, corresponding to the 
size of the pertinent tetrakaidecahedral body.  
The fractional frequencies associated with each 
of these classes [11] are reproduced in Table I. In 
the following, these classes Will be referred to by 
the indices i (i = 1 to 8) as indicated in Table I. 
Also, the upper limit of class i will be denoted by 
li(i = 1 to8).  

Table I can be directly employed for establish- 
ing the spatial grain-size distribution of non- 
single-size tetrakaidecahedral grains intersected 
by a test line. The purpose of this section, where 
only the truncation effect is considered, is the 
determination of such a distribution. The matrix 
formulation for accomplishing this purpose, 
presented below, is a rederivation of the pro- 
cedure previously proposed by Haroun [12]. 
The rather extensive derivation that follows is 
necessary to clearly overcome some defects of 
the original formulation. 

For determining the spatial size distribution 
of intersected grains, the experimental distribu- 
tion of intercepts is divided into the Same classes 
as shown in Table I. Note that, in such a case, 
the upper limit of the intercept distribution is, in 
principle, equal to the maximum observed inter- 
cept length, L. Moreover, the spatial grain-size 
distribution is approximated by a discrete distri- 
bution of eight grain sizes, D~ (i = 1 to 8). The 
spatial sizes are defined so that the maximum 
intercept length corresponding to grain size Di, 
coincides with the upper limit, lg, of intercept 
class i. (The intercept class and grain size defini- 
tions stated above are consistent with those of 
Haroun's work [12].) It must be remarked that 
indices i (i = 1 to 8) are now employed to refer 
to classes corresponding to the actual distribu- 
tion of intercepts. 

Thus, if N~ grains of size D~ were intersected, 
then, according to Table I, they would cause 
0.365 N~ intercepts of class 1, 0.295 N~ inter- 
cepts of class 2, 0.176 N1 intercepts of class 
3 . . . .  0.005 N~ intercepts of class 7 and 
0.013 NL intercepts of class 8. Similarly, if N2 
grains of size D2 were intersected, they would 
generate 0.365 N2 intercepts of class 2, 0.295 N2 
intercepts of class 3, 0.176 Nz intercepts of class 
4 , . . .  0.026 N2 intercepts of class 7, and atten- 
tion! (0.005 + 0.013) N2 intercepts now fitting 
class 8. Analogously, if N3 grains of size D3 were 
intersected, they would cause 0.365 N3 inter- 
cepts of class 3, 0.295 N3 intercepts of class 4, 
0.176 N3 intercepts of class 5 , . : .  0.047 N3 
intercepts of class 7 and (0.026 + 0.005 + 
0.013) N3 intercepts fitting class 8. The intercept 
contributions of grain sizes D4, 05 ,  06 ,  O 7 and 
D 8 can also be derived in a similar way; only the 
contributions of grain sizes O 7 and D8 will now 
be calculated. So, if N7 grains of size O 7 were  

intersected, they would cause 0.365 Nv inter- 
cepts of class 7 and (0.295 + 0.176 + 0.083 + 
0.047 + 0.026 + 0.005 + 0.013) N7 intercepts 
fitting class 8. Finally, if N8 grains of size D8 were 
intersected, they would cause (0.365 § 0.295 + 
0.176 + 0.083 + 0.047 + 0.026 + 0.005 + 
0.013) N8 intercepts of class 8; this sum gives 
1.010 N 8 intercepts. Note that grains of the 
smallest size D 8 contribute with intercepts only 
to intercept class 8 and, in principle, with exactly 
N8 intercepts. 

From the above reasoning, it follows that the 
number of intercepts, ni, of class i (i = 1 to 8) 
and the number of intersected grains N~, of size 
Di (i = 1 to 8), can be related by the matrix 
expression: 

n = IB[N (1) 

or  

N = IBi-~n (2) 

where n is the column vector of the number of 
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T A B L E  I I  Coefficients of  matrix [B[ in Equation 1 

0.365 0 0 0 

0.295 0.365 0 0 

0.176 0.295 0.365 0 

0.083 0.176 0.295 0.365 

0.047 0.083 0.176 0.295 

0.026 0.047 0.083 0.176 

0.005 0.026 0.047 0.083 

0.013 0.018 0.044 0.091 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0.365 0 0 0 

0.295 0.365 0 0 

0.176 0.295 0.365 0 

0.174 0.350 0.645 1.0 

intercepts n~ (i = 1 to 8), N is the column vector 
of the number of intersected grains N~ (i = 1 to 
8), and ]BI and IB] -I are the corresponding 
coefficient matrices. The complete expressions 
for matrices IBI and IB1-1 are shown in Tables II 
and III, respectively. In this way, the vector of 
the distribution of intersected grains, N, can be 
obtained from the vector of the intercept distri- 
bution, n, simply by pre-multiplication of the 
latter by the inverse matrix IB1-1 which takes 
into account the above-mentioned truncation 
effect. 

Haroun [12] originally deduced expressions 
for matrices IBI and IBI -~, employing a pro- 
cedure on which the one developed above is 
founded. Unfortunately, in that primitive 
deduction some errors slipped in. Apart from 
the fact that Haroun's IB[ matrix is rotated by 
half a turn with respect to its appropriate state 
(possibly, a clerical error), it appears that the 
procedure used by Haroun [12] for estimating 
the contributions of grain sizes D2, D3,  D4,  D5, 
D6,  D7 and D8 to the class of the smallest inter- 
cepts, here referred to as class 8, was incrorrect. 
In other words, seven of the eight coefficients of 
what corresponds to the eighth row vector of the 
present IBI matrix, were erroneously calculated 
by Haroun [12]. 

Moreover, as only the truncation effect was 
considered by Haroun [12], the distribution 
which was actually calculated in his paper, was 
that of the size of grains intersected by a test line. 

To obtain the distribution of the number of 
grains of each size per unit volume, or real grain- 
size distribution, the sampling effect should also 
be taken into account [1]. 

2.2. Sampling effect and final 
expressions of the method 

In the present section, through the consideration 
of the sampling effect, a final matrix expression 
is obtained for the calculation of the number of 
grains of each size Di (i = 1 to 8) per unit vol- 
ume from the number of intersected grains of 
each size D e given by Equation 2. 

It has been stated by DeHoffand Bousquet [3] 
that the average of the projected area of convex 
randomly oriented grains of size D on a plane 
perpendicular to the test line, is equal to kl D 2, 
where kl is a constant shape factor. As a conse- 
quence, the number of intersected grains of size 
Di by a test line of length S (for convex randomly 
oriented grains of the same shape), is given by 
the expression: 

N, = kID~NvS (3) 

where N /  is the number of grains of size D, per 
unit volume. Here, the grain size, De, will be 
defined as equal to its corresponding maximum 
intercept length, i.e. De = le. So, since Ii is equal 
to L, the value of the maximum actually ob- 
served intercept length, the grain size, De, is 
equal to (3/4)~-1L (i = 1 to 8). Thus, Equation 
3 can be re-written as: 

T A B L E  I I I  Coefficients of matrix IBI l in Equation 2 

2.740 0 0 0 
- 2.214 2.740 0 0 

0.469 - 2.214 2.740 0 

0.066 0.469 - 2.214 2.740 
- 0. I29 0.066 0.469 - 2.214 

0.055 - 0.129 0.066 0.469 
0.063 0.055 - 0.129 0.066 

- 0.060 0.003 0.059 - 0.071 

0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 

2.740 0 0 0 
- 2 . 2 1 4  2.740 0 0 

0.469 - 2.214 2.740 0 

- 0.004 0.469 - 1.767 1.0 
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T A B L E  IV Coefficients of matrix [AI in Equation 6 

2.740 0 0 0 

- 3 . 9 3 6  4.871 0 0 

1.482 - 6.997 8.660 0 

0.371 2.635 - 12.44 15.40 

- 1.289 0.659 4.685 - 22.12 

0.977 - 2.291 1.172 8.328 

1.989 1.736 - 4.072 2.084 

- 3 . 3 6 7  0.179 3.311 -3 .985  

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

27.37 0 0 0 

- 39.32 48.66 0 0 

14.81 - 69.89 86.50 0 

- 0 . 2 2 4  26.32 - 9 9 . 1 7  56.12 

1 {'4'~ 2~2 
N~V - k ~  \3J  N~ (4) 

Moreover, the above expression can be stated in 
matrix form as: 

1 
NV = ICIN (5) 

where N v is the column vector of the number of 
grains per unit volume, N is the column vector of 
the number of intersected grains and ]CI is a 
diagonal matrix whose coefficients are given by 
Cii = (4/3) 2i-2. Note that the coefficients of the 
sampling-effect matrix IcI only depend on the 
grain-size definitions employed. 
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3. Application and discussion 
The procedure derived above was applied to a 
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From Equations 2 and 5 a direct matrix 
expression for the vector of the number of grains 
of each size per unit volume, N v, as a function 
of the vector of the number of intercepts, n, 
corresponding to the previously defined classes, 
is found: 

1 
N ~ - k,~-~- ~lAIn (6) 

where IAI = ICI IBI-~. The coefficients derived in 
the present case for matrix IAI are presented in 
Table IV. 

Figure 1 The size distribution of intersec- 

8.0 9.0 ted ~)2 particles in a spheroidized Cu-A1 
eutectoid alloy, derived according to 

Equation 2. 
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set of 180 intercept data from 72 particles in a 
spheroidized (~ + 7z) eutectoid Cu-A1 alloy 
[13]. When only the truncation effect is taken 
into account, through the application of Equa- 
tion 2 and Table III (Section 2.1.), the size 
distribution of intersected particles shown in 
Fig. 1 is obtained. On the other hand, the spatial 
particle-size distribution, estimated by means of 
Equation 6 and Table IV (Section 2.2.) which 
consider both the truncation and sampling 
effects, is shown in Fig. 2. In this figure, the re- 
sults have been represented in a log-probability 
plot as percentage cumulative frequency of the 
spatial grain-size distribution as a function of 
grain size. Percentage frequency and not number 
of grains was calculated since, to the authors' 
best knowledge, the value of the corresponding 
shape factor, kl, has not been established. 
Because of the straightness of the plot, this dis- 
tribution can be identified as being log-normal. 
Incidentally, the spatial distributions of many 
alloy systems are closely described by the log- 
normal distribution [1]. 

The spatial distribution obtained from the 

L 
4.0 

Figure 2 Percentage cumulative frequency 
against spatial particle-size of ~2 particles 
in a spheroidized Cu-A1 eutectoid alloy, 
derived according to the methods indi- 
cated. 

5.5 

referred 72 intercept data by application of 
Spektor's chord method for spherical particles 
[2], is also presented in Fig. 2. In this case, the 
same definition for intercept classes and grain 
sizes as stated in Section 2.1. were employed. It 
is seen in Fig. 2 that both computation tech- 
niques lead to similar percentage spatial distri- 
butions. When the present matrix method and 
that of Spektor were applied to some other inter- 
cept data sets, it was again found that the per- 
centage distributions deduced by both methods 
were similar, suggesting that this is a fact of 
ordinary occurrence. This resemblance can be 
related to the verified similarity between the 
intercept class frequencies, for the classes 
defined in Section 2.1., of the intercept distribu- 
tion for single-size tetrakaidecahedral grains 
[11], see Table I, and those of the intercept distri- 
bution for single-size spherical grains derived by 
the Spektor's chord method, see Table V. 

Finally, notice that the reasoning developed 
here, where the truncation and sampling effects 
are separately considered under a matrix form, 
is a procedure of general validity. Thus, this 
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T A B L E  V Distribution of  linear intercepts for single- 
size spherical grains according to Spektor's chord method, 
for the same intercept classes indicated in Table I 

Class number Relative frequency 

8 0.0178 
7 0.0139 
6 0.0246 
5 0.0438 
4 0.0779 
3 0.1384 
2 0.2461 
1 0.4375 

reasoning can be extended, for establishing 
spatial distributions from linear distributions, to 
any other combination of convex grain shape 
and geometrically scaled intercept classes, 
provided the distribution of linear intercepts for 
single-size grains of the corresponding shape is 
known. 

4. Conclusions 
A matrix method for determining the spatial 
grain-size distribution of tetrakaidecahedral 
grains (or particles) from linear intercepts was 
derived. The percentage spatial grain-size distri- 
butions obtained by this method are similar to 
those estimated by the Spektor's chord method 
for spherical grains. The derivation procedure of 
the present method is extendible to any other 
convex grain shape, provided the linear intercept 
distribution for single-size grains of the corres- 
ponding shape is known. 
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